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Letter to the Editor 

Comparison of the Finite Difference Boundary Value Method 
and the Cooley-Cashion-Zare Method for Solving 

One-Dimensional Eigenvalue Equations 

Truhlar [I] has recently described a finite difference boundary value method 
(FDBV method) for determining eigenvalues and eigenfunctions of the one- 
dimensional Schrodinger equation. In this note it is shown that his implementation 
of this method is inferior in several important respects to the method introduced 
by Cooley [2] and developed by Cashion [3] and Zare [4] (CCZ method), and 
since then widely used [5-71. Both methods are considered and compared. 

It is required to obtain solutions of the radial Schrodinger equation 

satisfying 

MO> = 0 and #h(R) xz 0, (2) 

where U(R) = (2p/fi2) V(R) + 1(Z + 1)/R2, A, -L -(2p/h2) E, and the parameters 
have their usual significance. Trivial modifications to the boundary conditions (2) 
are required if a real one-dimensional problem is considered, and they do not 
affect the following discussion. The boundary conditions (2) are approximated 
by +nW = b,(&) = 0, h w ere the precise values chosen for R, and R, depend 
on the potential U(R) and A, . More efficient procedures for satisfying the right- 
hand boundary condition will be mentioned below. 

Both methods use a finite difference approximation to the differential operator 
to convert the problem to that of determining the eigenvalues of a band matrix 
of high order. Significant differences exist both in the choice of finite difference 
approximation and in the method of solving for the eigenvalues. 

Consider a grid of N mesh points, Rt = R, + ih, 1 < i < N, where 
h = (R, - R,)/(N + 1). The use of varying step sizes [8] makes no significant 
difference to the comparison between the two methods. In the FDBV method 
a three point central difference formula [9] is used for the differential operator. 
Then Eq. (I) is approximated, with a truncation error of order h4, by the matrix 
equation 

(A - hI)X = 0, (3) 
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where A is a symmetric, tridiagonal matrix with elements A,,i = -(2/h* + U,), 
Aieihl = l/h’, Ui = U(Ri)p (X)i = &(RJ and the suffix has been dropped on 
the eigenvalue and eigenvector. Alternatively, the CCZ method uses the Numerov 
formula [9]. This yields, with a truncation error of order /P, 

(A' - hB) X = 0, (4) 

where A' and B are tridiagonal matrices with elements A;,, = -(2/P + S&/6), 
A;,i,l = l/h2 - (l/12) U,+l, B<,i = 5/6, Bi,i,l = l/12. Typically the matrices 
may be of order up to 1000. 

The FDBV method apparently uses the Sturm sequence technique [IO] to 
determine the eigenvalues of A. (In [l] the Givens-Householder method is quoted. 
Both the Givens method and the Householder method are used to transform 
real symmetric matrices to tridiagonal form [I 11. Since A is already tridiagonal 
this transformation is not required. However the method used in the program 
in [IO] to find the eigenvalues of a symmetric tridiagonal matrix is the Sturm 
sequence technique). This technique involves bisection of an interval known to 
contain the required root, so, if eigenvalues are required to an accuracy of lO-‘j 
of their separation, then roughly 20 iterations will be necessary. The advantages 
of this technique are that it is very stable and that a specified eigenvalue can 
be calculated without finding all the eigenvalues of the matrix [Ill. This property 
is almost essential when perhaps less than 50 of the eigenvalues are of interest. 
The Sturm sequence technique does not yield the corresponding eigenvector, 
which is usually obtained by inverse iteration [1 11. 

The technique used by the CCZ method to solve Eq. (4) employs Newton’s 
method to determine the zeroes of a function closely related to the characteristic 
polynomial. Since the vibrational energy levels of diatomic molecules are well 
separated the characteristic polynomial has single roots, so quadratic convergence 
is obtained. The technique may also be considered as an inverse iteration to find 
the eigenvalue of Eq. (4) which is closest to a trial eigenvalue A*, followed by 
a correction to X* [II]. An approximate eigenvector XI is generated by solving 
XI = (A' - h*B)-l X0, where X,, can be almost arbitrary [1 I]. An improved 
eigenvalue is obtained from 

h w h* + [XIT(A' - h*B) X,]/(XITX,) 
== A" + ~lT&I(~lT~l). (5) 

The trial eigenvector X0 has all elements except the r-th equal to zero, so finding 
XI is similar to evaluating a three term recurrence relation. The application of this 
technique to Eq. (3) has been discussed in detail by Osborne [12] and Sykes [ 131. 
For this case it is equivalent to obtaining an improved eigenvalue using the 
Rayleigh quotient of the approximate eigenvector X, . 
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However no matrix theory has been obtained for the full Numerov approxi- 
mation, Eq. (4). Since A’ in Eq. (4) is unsymmetric a direct application of the 
Rayleigh quotient [12] to improve the eigenvalue would require the eigenvector 
of both Eq. (4) and its transpose. A symmetric form of Eq. (4) can be obtained 
by introducing Y = DX, where Dij = 6i,j[l - (h2/12)(Ui + A)]. Then Y satisfies 

(A” - hB) Y = 0 (6) 

where At,i*l = (I//?) - UJl2, A;,, = --((~/IV’) + SUJ6). While the Rayleigh 
quotient method could be used, with DX, , to improve X*, this would yield 

h = A* + (x,TDDX,)/(X,‘DBDx,), (7) 

which is slightly different from Eq. (5). The CCZ method writes Eq. (4) as 

[A + AD-l + (D-l - I) U] Y = 0, 

where U+f = 6i,jUi . 

(8) 

Since Eq. (8) is nonlinear in h, no simple direct connection with matrix methods 
seems possible. However, because of the closeness of Eqs. (5) and (7) it seems 
reasonable to assume that the convergence properties of the two methods for 
improving the eigenvalue will be similar. Equation (5) should then converge on 
the desired eigenvalue, if h* lies in the interval bounded by the pair of adjacent 
roots of DTpl , the (Y - 1)-th principal minor of the determinant of (A” - XB) [12]. 

With the use of a trial eigenvalue h* it is possible to employ a WKB type 
solution to approximate the boundary condition for large R. The calculation 
required to improve a trial eigenvalue is comparable with that for a single bisection 
in the Sturm sequence technique. Blatt [14] has discussed how the number of 
changes of sign in XI can be used to check that convergence to the desired eigenvalue 
is occurring, thus almost eliminating this disadvantage of iterative methods. 
Counting the number of sign changes, which is related to the Sturm sequence 
property, was used by Harrison and Bernstein [1.5] for finding eigenvalues and 
eigenvectors. It should be noted that Le Roy and Bernstein [S] switched to the 
CCZ method partly because of its superior convergence. The general eigenvalue 
problem of the form of Eq. (6) has been discussed by Peters and Wilkinson [16]. 
They recommend the use of the Sturm sequence to isolate an eigenvalue, followed 
by interpolation in the characteristic polynomial to improve it. They mention the 
use of inverse iteration and the Rayleigh quotient but say that it is not easy to 
ensure convergence to specific vectors. For the vibrational eigenvalue problem 
this does not seem to be a serious difficulty. 
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Generally spectroscopic information allows quite good initial estimates to be 
employed, so that four or five iterations are normally sufficient to obtain an 
eigenvalue with a precision limited only by the machine wordlength. Cooley 
[2, Table I] gives examples of the convergence for the pathological case of the 
trial eigenvalue lying about midway between X, and X, There when h* was 
slightly closer to h, , convergence to h, occurred in nine iterations, while with h* 
slightly closer to h, convergence to h, occurred in six iterations, in both cases 
with an accuracy of about one part in IO’. 

Hence, it may be seen that this technique shares with the Sturm sequence 
technique the ability to obtain a particular eigenvalue, and, while it does not have 
the same stability in general, it has second order rather than first order convergence 
properties for vibrational eigenvalues. 

Truhlar [I] discusses in detail the extrapolation of the calculated eigenvalues 
of (3) to zero step size. With the central difference formula used in [I] the cumulative 
error is of order h2 and is an even function of h [I]. Because of the h2 error a fairly 
large correction, 0.4 % of the eigenvalue separation, was necessary even with 
N = 1000 for the u = 9 level. For the Numerov method the cumulative error 
behaves as h4 [17] and it has seldom been considered worthwhile running several 
grids and extrapolating to zero step size, although the success of this procedure 
in [I] suggests that some savings might be obtained. It is interesting that a simple 
extrapolation to zero step size, as a function of h4, applied to the two smallest 
step sizes in Table 2 of [2] improves the agreement with the exact results by between 
a factor of 2 for 0 = 0 and a factor of 17 for v = 4. (There is a misprint in this 
table for the exact value of El . It should read -160.28332.) 

A direct comparison between the FDBV and CCZ 150 point integrations 
for the v = 0 and u = 2 levels shows that in both cases the ratio of the error 
in the eigenvalue to the eigenvalue separation is about 100 times smaller in the 
CCZ method than in the FDBV method. 

Hence, as well as determining the eigenvalues more efficiently the CCZ method 
finds the eigenvalues resulting from a superior finite difference approximation 
to the differential Eq. (1). 

The success of the inverse iteration technique for determining the eigenvalues 
of the finite difference matrix suggests that this technique should also be useful 
for eigenvalue methods employing expansion in a basis set (see refs. in [I, l&20]), 
since the eigenvalue distribution will be very similar. A related quadratically 
convergent method has been employed [I81 and a Rayleigh quotient method has 
also been used successfully [21]. The quadratically convergent techniques should 
make expansion-in-a-basis-set methods very competitive with finite difference 
methods [20]. since they should be able to use much smaller matrices in many 
cases. 
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